# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE103237" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE103237" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE103237.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE103237.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE103237.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if the dataset likely contains gene expression data is_gene_available = True # Based on the background info (GEP present) # 2) Variable Availability and Data Type Conversion # Identify the rows where each variable is found (or None if not available) trait_row = 3 # Corresponds to "disease: ET/PV/healthy control" age_row = None # No row contains age information gender_row = 1 # Corresponds to "Sex: M/F/not provided" # Define conversion functions def convert_trait(x: str): if not x or pd.isna(x): return None val = x.split(':')[-1].strip().lower() if val == 'et': return 1 elif val in ['pv', 'healthy control']: return 0 return None convert_age = None # No age data, so no conversion needed def convert_gender(x: str): if not x or pd.isna(x): return None val = x.split(':')[-1].strip().lower() if val.startswith('m'): return 1 elif val.startswith('f'): return 0 return None # 3) Initial Filtering and Saving Metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_output = preview_df(selected_clinical_df) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., '11715100_at') are Affymetrix probe IDs # and not standard human gene symbols. Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) In this dataset, the probe identifiers in the gene expression DataFrame match the "ID" column, # and the actual gene symbols are found in the "Gene Symbol" column of the gene annotation. # 2) Extract the two relevant columns and rename them appropriately for mapping. mapping_df = gene_annotation[['ID', 'Gene Symbol']].rename(columns={'Gene Symbol': 'Gene'}) # 3) Apply the mapping to convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a quick check of the resulting DataFrame print(gene_data.shape) print(gene_data.head()) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data tmp_df = pd.read_csv(out_clinical_data_file, header=0) # Rename the row index so the first row is the trait, and the second row (if present) is gender row_count = tmp_df.shape[0] if row_count == 1: tmp_df.index = [trait] elif row_count == 2: tmp_df.index = [trait, "Gender"] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait and gender rows found; no age row." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )