# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE12295" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE12295" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE12295.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE12295.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE12295.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # Based on the background info about "spotted oligonucelotide platelet-focused arrays" # 2) Variable Availability and Data Type Conversion # From the sample characteristics dictionary provided: # {0: ['Essential thrombocythemia Patient Platelet', 'Reactive Thrombocytosis Patient platelets', 'Normal Patient Platelets']} # We see multiple categories indicating different conditions, including "Essential thrombocythemia". # Hence, trait data is available at key 0 (multiple unique values). No indication of age or gender keys. trait_row = 0 age_row = None gender_row = None def convert_trait(value: str): """Binary conversion for ET vs. non-ET.""" if not isinstance(value, str): return None # Extract substring after colon if it exists val = value.split(':')[-1].strip().lower() # Label sample as 1 if it is 'Essential thrombocythemia', else 0 if recognized if 'essential thrombocythemia' in val: return 1 elif val: return 0 return None def convert_age(value: str): """Stub for age conversion; here we have no age data.""" return None def convert_gender(value: str): """Stub for gender conversion; here we have no gender data.""" return None # 3) Save Metadata (Initial Filtering) is_trait_available = (trait_row is not None) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: # 'clinical_data' is assumed to be the DataFrame containing sample characteristics selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save print("Clinical features preview:", preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the listed identifiers (e.g., '1001', '1002', etc.), they appear to be numeric IDs # rather than official human gene symbols. Thus, gene symbol mapping is likely required. print("These IDs are numeric and not standard human gene symbols.\nrequires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the matching columns for gene expression ID and gene symbol from the annotation dataframe. # The 'ID' column in gene_annotation matches the numeric identifier used in gene_data. # The 'Gene Symbol' column corresponds to the actual gene symbols. # 2. Create a mapping dataframe. gene_mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col='ID', # Matches the index of gene_data gene_col='Gene Symbol' # Column containing gene symbols ) # 3. Convert probe-level data to gene-level data. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping_df) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Since we only have the trait row (and no age/gender), # read the one-row CSV with header=0, then rename index to [trait]. tmp_df = pd.read_csv(out_clinical_data_file, header=0) # We expect exactly one row: the trait if len(tmp_df) == 1: tmp_df.index = [trait] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Only trait row present; no age/gender rows." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )