# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE159514" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE159514" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE159514.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE159514.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE159514.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the series title and summary, this dataset is gene expression data on an Affymetrix platform. # 2. Variable Availability and Data Type Conversion # From sample characteristics dictionary: # {0: ['disease: PPV', 'disease: Overt-PMF', 'disease: PET', 'disease: Pre-PMF'], # 1: ['driver mutation: JAK2V617F', 'driver mutation: CALR Type 1', 'driver mutation: MPL', # 'driver mutation: TN', 'driver mutation: CALR Type 2', 'driver mutation: CALR', 'driver mutation: JAK2 ex12']} # 2.1 Identify data availability # We see multiple values under key=0 for "disease", so we infer that is the trait row. trait_row = 0 # This row contains "PET" which we interpret as (post) essential thrombocythemia age_row = None # Not available gender_row = None # Not available # 2.2 Data Type Conversion def convert_trait(value: str) -> int: """ Convert the disease field to a binary indicator of essential thrombocythemia (ET). Here we regard 'PET' (post-ET) as having the trait. """ # Split at colon and strip (take last part to handle potential "disease: PET" format). parts = value.split(':') disease_label = parts[-1].strip().lower() if 'pet' in disease_label: return 1 # For other disease subtypes, return 0 return 0 # Since age and gender are unavailable, we won't define conversion functions for them. convert_age = None convert_gender = None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only proceed if trait_row is not None if trait_row is not None: # Suppose 'clinical_data' is the DataFrame containing the sample characteristics. # In a real scenario, we'd have it from previous steps or from reading a file. # For demonstration, let's assume 'clinical_data' is already loaded. # (We'll just reference it here and expect it to exist in this environment.) selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The given identifiers (e.g., "11715100_at") appear to be Affymetrix microarray probe set IDs. # These are not standard human gene symbols and thus need mapping to official gene symbols. print("They are Affymetrix microarray probe set IDs, not standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the appropriate columns in the gene annotation: # - The probe identifiers correspond to the "ID" column. # - The gene symbols correspond to the "Gene Symbol" column. # 2. Create a gene mapping dataframe. mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col="ID", gene_col="Gene Symbol" ) # 3. Apply the mapping to convert probe-level measurements into gene-level expression. gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=mapping_df ) # For verification, let's quickly check the shape of the resulting gene_data. print("Mapped gene_data shape:", gene_data.shape) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Since we only have the trait row (and no age/gender), # read the one-row CSV with header=0, then rename index to [trait]. tmp_df = pd.read_csv(out_clinical_data_file, header=0) # We expect exactly one row: the trait if len(tmp_df) == 1: tmp_df.index = [trait] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Only trait row present; no age/gender rows." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )