# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE174060" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE174060" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE174060.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE174060.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE174060.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the series title mentioning "Gene expression data" # 2. Variable Availability and Data Type Conversion # After examining the sample characteristics dictionary, we identified: trait_row = 4 # diagnosis: [ET, PV, PMF, pPV-MF, pET-MF, healthy control] age_row = 2 # age: [Various numbers] gender_row = 3 # Sex: [F, M] # Define converters def convert_trait(value: str) -> int: """ Convert diagnosis information to a binary indicator of Essential Thrombocythemia (ET). If the diagnosis is ET or pET-MF, return 1; otherwise 0. Unknown values return None. """ # Example value: "diagnosis: ET" parts = value.split(":") if len(parts) < 2: return None diag = parts[1].strip() if diag in ["ET", "pET-MF"]: return 1 else: return 0 def convert_age(value: str) -> Optional[int]: """ Convert age information into integer value. If parsing fails, return None. """ # Example value: "age: 41" parts = value.split(":") if len(parts) < 2: return None try: return int(parts[1].strip()) except ValueError: return None def convert_gender(value: str) -> Optional[int]: """ Convert gender information to binary. Female (F) -> 0, Male (M) -> 1, unknown -> None """ # Example value: "Sex: F" parts = value.split(":") if len(parts) < 2: return None gender_str = parts[1].strip().upper() if gender_str == "F": return 0 elif gender_str == "M": return 1 else: return None # Determine trait data availability is_trait_available = trait_row is not None # 3. Save Metadata (initial filtering) and store the returned usability is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only if trait data is available (trait_row is not None) if is_trait_available: selected_clinical_df = geo_select_clinical_features( clinical_data, # Provided DataFrame with sample characteristics trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Observe output preview_output = preview_df(selected_clinical_df, n=5) print("Preview of extracted clinical features:", preview_output) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the given identifiers (e.g., "TC01000001.hg.1"), they do not appear to be standard human gene symbols. # They likely require mapping to known gene symbols. requires_gene_mapping = True # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in 'gene_annotation' that match our probe IDs and gene symbols. # From the preview, the 'ID' column matches the probe identifiers (e.g. "TC01000001.hg.1"). # The 'gene_assignment' column contains text with gene symbols that we need to parse. probe_id_col = "ID" gene_symbol_col = "gene_assignment" # 2. Get a gene mapping dataframe from these two columns. mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # For verification, let's print the first 20 genes now present in 'gene_data'. print("First 20 gene symbols in the mapped gene_data:") print(gene_data.index[:20]) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Load the three-row clinical CSV (trait, age, gender) without forcing an index column tmp_df = pd.read_csv(out_clinical_data_file, header=0) # Rename these three rows tmp_df.index = [trait, "Age", "Gender"] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait, Age, and Gender rows are properly indexed and linked." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )