# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE55976" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE55976" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE55976.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE55976.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE55976.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Check if gene expression data is available # Based on the description ("cDNA microarray analysis ... gene expression profile ..."), # we conclude that gene expression data is available. is_gene_available = True # Step 2: Determine data availability and define row indices # From the sample characteristics dictionary, row 0 covers "subject condition" with multiple MPNs, # including "Essential thrombocythemia". Hence trait data is available in row 0. trait_row = 0 age_row = None gender_row = None # Step 2.2: Define data type conversion functions def convert_trait(x: str): if not x or ':' not in x: return None value = x.split(':', 1)[1].strip().lower() # Convert "Essential thrombocythemia" to 1, otherwise 0 if 'essential thrombocythemia' in value: return 1 else: return 0 def convert_age(x: str): # Not used (age_row is None), but a stub is provided return None def convert_gender(x: str): # Not used (gender_row is None), but a stub is provided return None # Step 3: Initial filtering and metadata saving is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Extract clinical features if trait_row is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical data preview_dict = preview_df(selected_clinical_df, n=5, max_items=200) print("Preview of selected clinical features:", preview_dict) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric probe-like identifiers, these are not standard human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify columns in 'gene_annotation' corresponding to the probe ID and gene symbol # Based on the preview, 'ID' matches the probe IDs in the expression data # and 'GENE SYMBOL' corresponds to the gene symbols. # 2. Get a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE SYMBOL") # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Load the single-row clinical CSV without forcing an index column tmp_df = pd.read_csv(out_clinical_data_file, header=0) # Rename the single row to the trait. Now columns = sample IDs, index = [trait]. tmp_df.index = [trait] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row renamed to trait for linking." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )