# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE57793" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE57793" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE57793.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE57793.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE57793.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background info ("Microarrays were used to assess gene expression..."), # we conclude that gene expression data is available. is_gene_available = True # 2. Variable Availability and Data Type Conversion # From the Sample Characteristics Dictionary: # {0: ['disease state: ET', 'disease state: PMF', 'disease state: PV'], # 1: ['treatment: untreated', 'treatment: IFN-alpha2'], # 2: ['tissue: Whole blood']} # # We see that key=0 has multiple values (ET, PMF, PV). # We can map "ET" vs. "non-ET" for our trait "Essential_Thrombocythemia". # There are no age or gender data in the dictionary. trait_row = 0 # because we can obtain "ET" from key=0 age_row = None gender_row = None def convert_trait(value: str) -> Optional[int]: """ Convert disease state to a binary representation: ET -> 1 PMF/PV -> 0 otherwise -> None """ # Split on colon and take the last part val = value.split(':')[-1].strip() if val == "ET": return 1 elif val in ["PMF", "PV"]: return 0 else: return None # Since age and gender are not available, define no-op converters returning None. def convert_age(value: str) -> Optional[float]: return None def convert_gender(value: str) -> Optional[int]: return None # 3. Save Metadata (initial filtering, not final) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only perform if trait_row is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, # will name the column as "Essential_Thrombocythemia" trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) # Save extracted clinical data to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) requires_gene_mapping = True # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns to use for the probe IDs (the same as the gene expression data) and the gene symbols probe_col = 'ID' # the column in annotation that matches gene_data's index gene_symbol_col = 'Gene Symbol' # the column storing gene symbols # Get the mapping dataframe mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Print basic information about the resulting gene_data print("Gene-level data shape:", gene_data.shape) print("Preview of gene-level data:") print(gene_data.head(5)) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Load the single-row clinical CSV without forcing an index column tmp_df = pd.read_csv(out_clinical_data_file, header=0) # Rename the single row to the trait. Now columns = sample IDs, index = [trait]. tmp_df.index = [trait] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row renamed to trait for linking." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )