# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE65161" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE65161" # Output paths out_data_file = "./output/preprocess/1/Essential_Thrombocythemia/GSE65161.csv" out_gene_data_file = "./output/preprocess/1/Essential_Thrombocythemia/gene_data/GSE65161.csv" out_clinical_data_file = "./output/preprocess/1/Essential_Thrombocythemia/clinical_data/GSE65161.csv" json_path = "./output/preprocess/1/Essential_Thrombocythemia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if the dataset likely contains gene expression data is_gene_available = True # From the background, this seems to be gene expression data, not miRNA/methylation. # 2) Identify available keys for trait, age, gender # None of these fields appear in the sample characteristics dictionary. trait_row = None age_row = None gender_row = None # 2.2) Define data type conversion functions (though not used here, must be defined) def convert_trait(value: str): # No trait data is available in this dataset return None def convert_age(value: str): # No age data is available in this dataset return None def convert_gender(value: str): # No gender data is available in this dataset return None # 3) Conduct initial filtering on dataset usability and record metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Since trait_row is None, we skip clinical feature extraction # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The gene identifiers shown (e.g., "1007_s_at", "1053_at") are typical Affymetrix probe IDs, # which are not standard human gene symbols and thus require mapping. requires_gene_mapping = True # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Identify the columns in `gene_annotation` that correspond to the probe IDs (matching the expression data) # and the columns that correspond to gene symbols. # From the previous step, we observed that 'ID' matches the expression data, # and 'Gene Symbol' holds the gene symbols. probe_col = "ID" gene_symbol_col = "Gene Symbol" # 2. Build the mapping dataframe (probe_to_gene) probe_to_gene = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Use the mapping to convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(gene_data, probe_to_gene) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Load the single-row clinical CSV without forcing an index column tmp_df = pd.read_csv(out_clinical_data_file, header=0) # Rename the single row to the trait. Now columns = sample IDs, index = [trait]. tmp_df.index = [trait] selected_clinical_df = tmp_df linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row renamed to trait for linking." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )