# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE121431" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121431" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121431.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info, this appears to be gene expression data of AML cell lines # 2. Variable Availability and Data Type Conversion # For trait: Can infer from Feature 0 (disease state) trait_row = 0 def convert_trait(value): if not isinstance(value, str): return None value = value.lower().split(': ')[-1] if 'acute myeloid leukemia' in value or 'aml' in value: return 1 return None # For age: Not available as this is cell line data age_row = None def convert_age(value): return None # For gender: Not available as this is cell line data gender_row = None def convert_gender(value): return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_result = preview_df(clinical_df) print("Preview of clinical data:", preview_result) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # These are probe IDs from Affymetrix arrays that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # 1. & 2. Extract gene mapping from annotation # ID column matches probe identifiers in gene expression data # Gene Symbol column contains the corresponding gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata # Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined # based on cell subtypes (AMKL vs non-AMKL). is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)