# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE222124" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222124" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222124.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene expression data availability is_gene_available = True # This is expression data from cell lines, not miRNA/methylation # 2.1 Data availability # Row 0 shows leukemia cell lines, can be used for trait trait_row = 0 # Age and gender not provided for cell lines age_row = None gender_row = None # 2.2 Data type conversion functions def convert_trait(value): if not value or ':' not in value: return None cell_type = value.split(': ')[1].lower() if 'monocytic leukemia' in cell_type: return 1 # Acute monocytic leukemia elif 't cell leukemia' in cell_type: return 0 # Other leukemia types elif 'natural killer cell leukemia' in cell_type: return 0 return None def convert_age(value): pass # Not used since age_row is None def convert_gender(value): pass # Not used since gender_row is None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical feature extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Extract probe-to-gene mapping from annotation gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, gene_mapping) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata # Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined # based on cell subtypes (AMKL vs non-AMKL). is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)