# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE222169" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222169.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Given information about leukemia cell lines suggests this is likely gene expression data # 2. Variable Availability and Data Type Conversion # 2.1 Row identification trait_row = 0 # Contains AML information in 'cell line' and 'tissue source' fields age_row = None # Age information not available gender_row = None # Gender information not available # 2.2 Conversion Functions def convert_trait(value: str) -> int: """Convert trait values to binary: 1 for AML cases""" if pd.isna(value): return None value = value.split(': ')[-1].lower() # Both cell lines and patient samples are AML cases if 'aml' in value or 'molm-14' in value or 'oci-aml2' in value: return 1 return None def convert_age(value: str) -> float: """Placeholder function - age data not available""" return None def convert_gender(value: str) -> int: """Placeholder function - gender data not available""" return None # 3. Save metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # The identifiers appear to be transcript cluster IDs from Affymetrix Clariom D arrays # They need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Looking at the example values in SPOT_ID.1, we can find gene symbols within parentheses # followed by ']', like '(OR4F5)', '(SAMD11)', etc. # Create a custom function to extract gene symbols from complex text descriptions def extract_gene_symbols_from_desc(text): """Extract gene symbols from complex annotation text that follows format: ... (SYMBOL) [gene_biotype ... """ if pd.isna(text): return [] # Split on '//' to get separate entries and look for gene symbol pattern # Gene symbols typically appear in parentheses before [gene_biotype symbols = [] entries = text.split('//') for entry in entries: # Look for text in parentheses followed by [gene_biotype match = re.search(r'\(([^)]+)\)\s*\[gene_biotype', entry) if match: symbol = match.group(1) # Some entries have additional text like "(Drosophila)" - remove that symbol = re.sub(r'\s*\([^)]+\)$', '', symbol) symbols.append(symbol) return list(set(symbols)) # Remove duplicates # Add a column with extracted gene symbols gene_annotation['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_gene_symbols_from_desc) # Get mapping between IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene') # Apply gene mapping to convert probe-level data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical data from previous step selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=0, # Using first row containing cell line info convert_trait=convert_trait, # Using previously defined convert_trait function age_row=None, convert_age=None, gender_row=None, convert_gender=None ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data comparing different AML cell lines and treatments." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)