# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE235070" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE235070" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE235070.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE235070.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background info, this appears to be a SuperSeries about AML patients # Cannot determine if it contains gene expression data based on limited info is_gene_available = False # 2.1 Data Availability # From sample characteristics: # Row 0 contains disease state info which indicates AML trait trait_row = 0 # Age and gender info not available age_row = None gender_row = None # 2.2. Data Type Conversion Functions def convert_trait(x): # Extract value after colon and convert to binary # 'patient with AML' indicates positive case (1) if pd.isna(x): return None value = x.split(': ')[-1].strip().lower() if 'aml' in value: return 1 return None convert_age = None convert_gender = None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview and save clinical data print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file)