# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE99612" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE99612" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE99612.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data - Not a miRNA or methylation study is_gene_available = True # 2. Variable Availability and Data Type Conversion # This is cell line data, not human subject data trait_row = None def convert_trait(x): return None age_row = None def convert_age(x): return None gender_row = None def convert_gender(x): return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # 1. Identify relevant columns for gene mapping # 'ID' in gene annotation matches identifiers in gene expression data # 'gene_assignment' contains gene symbol information # 2. Extract gene mapping dataframe gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # 3. Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(gene_data, gene_mapping) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Create minimal linked data structure linked_data = pd.DataFrame(index=gene_data.columns) # 3-4. Skip missing value handling since data is not usable # Mark as biased since we have no trait data is_biased = True # 5. Final validation and save metadata validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=linked_data, note="This is a cell line experiment, not a human subject study. Contains no trait data." ) # 6. Skip saving linked data since it's not usable