# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # 1. Select the relevant subdirectory for acute myeloid leukemia subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)' cohort_dir = os.path.join(tcga_root_dir, subdirectory) # 2. Get the file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Use TCGA project code LAML instead of full trait name cohort_dir = os.path.join(tcga_root_dir, "LAML") if not os.path.exists(cohort_dir): print(f"Error: Directory not found: {cohort_dir}") print("Please verify the data directory structure and path configuration.") else: clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Preview age columns age_preview = {} for col in candidate_age_cols: age_preview[col] = clinical_df[col].head(5).tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: gender_preview[col] = clinical_df[col].head(5).tolist() print("\nGender columns preview:", gender_preview) # Build the cohort directory path cohort_dir = os.path.join(tcga_root_dir, "LAML") # Get the clinical file path clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) # Read clinical data clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) # Default to None age_col = None gender_col = None # Search for age column - look for common patterns age_candidates = [col for col in clinical_df.columns if 'age' in col.lower()] if age_candidates: # Preview first few values of each candidate for col in age_candidates: preview = clinical_df[col].head() # Check if column has numeric age values after conversion converted = preview.apply(tcga_convert_age) if not converted.isna().all(): age_col = col break # Search for gender column - look for common patterns gender_candidates = [col for col in clinical_df.columns if 'gender' in col.lower() or 'sex' in col.lower()] if gender_candidates: # Preview first few values of each candidate for col in gender_candidates: preview = clinical_df[col].head() # Check if column has valid gender values after conversion converted = preview.apply(tcga_convert_gender) if not converted.isna().all(): gender_col = col break # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Select the relevant subdirectory for acute myeloid leukemia subdirectory = 'TCGA_Acute_Myeloid_Leukemia_(LAML)' cohort_dir = os.path.join(tcga_root_dir, subdirectory) # 2. Get the file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # 1. Extract and standardize clinical features # First create trait labels using sample IDs, then add demographics if available clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)