# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE184382" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE184382" # Output paths out_data_file = "./output/preprocess/3/Allergies/GSE184382.csv" out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE184382.csv" out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE184382.csv" json_path = "./output/preprocess/3/Allergies/cohort_info.json" # First print all files to see what's available print("All files in directory:") print(os.listdir(in_cohort_dir)) print() # Get file paths with expanded pattern matching for compressed files files = os.listdir(in_cohort_dir) soft_files = [f for f in files if ('soft' in f.lower() or 'family' in f.lower() or 'annot' in f.lower()) and (f.endswith('.gz') or f.endswith('.txt'))] matrix_files = [f for f in files if ('matrix' in f.lower() or 'series' in f.lower()) and (f.endswith('.gz') or f.endswith('.txt'))] print("Found files:") print(f"SOFT files: {soft_files}") print(f"Matrix files: {matrix_files}\n") # Get full file paths soft_file = os.path.join(in_cohort_dir, soft_files[0]) matrix_file = os.path.join(in_cohort_dir, matrix_files[0]) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n")