# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE119995" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE119995" # Output paths out_data_file = "./output/preprocess/3/Anxiety_disorder/GSE119995.csv" out_gene_data_file = "./output/preprocess/3/Anxiety_disorder/gene_data/GSE119995.csv" out_clinical_data_file = "./output/preprocess/3/Anxiety_disorder/clinical_data/GSE119995.csv" json_path = "./output/preprocess/3/Anxiety_disorder/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # From series title and summary, this dataset contains mRNA expression data from blood plasma is_gene_available = True # 2.1 Data Availability # Trait: all samples have panic disorder (Feature 0), so not useful for case-control study trait_row = None # Age: not available in sample characteristics age_row = None # Gender: available in Feature 2 gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): # Not used since trait_row is None return None def convert_age(x): # Not used since age_row is None return None def convert_gender(x): if pd.isna(x): return None val = x.split(': ')[1].lower() if val == 'female': return 0 elif val == 'male': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Skip since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene IDs start with "ILMN_" which indicates these are Illumina probe IDs # They need to be mapped to human gene symbols for analysis requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # 1. Observe the gene identifiers in both gene expression data and annotation: # Gene expression data uses 'ILMN_' probe IDs which is stored as 'ID' column in annotation # Gene symbols are stored in 'Symbol' column in annotation # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data gene_data.to_csv(out_gene_data_file) # Since we already determined in Step 2 that there's no valid trait variation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # All samples have same trait value is_biased=True, df=pd.DataFrame(), note="Dataset lacks trait variation - all samples have panic disorder" )