# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE68526" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE68526" # Output paths out_data_file = "./output/preprocess/3/Anxiety_disorder/GSE68526.csv" out_gene_data_file = "./output/preprocess/3/Anxiety_disorder/gene_data/GSE68526.csv" out_clinical_data_file = "./output/preprocess/3/Anxiety_disorder/clinical_data/GSE68526.csv" json_path = "./output/preprocess/3/Anxiety_disorder/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Gene Expression Data Availability is_gene_available = True # From the background info, this study contains peripheral blood transcriptome profiles # Convert trait (anxiety score) - use feature 13 which contains Beck Anxiety Inventory scores def convert_trait(value: str) -> Optional[float]: if not value or 'missing' in value: return None # Extract numeric value after colon try: return float(value.split(': ')[1]) except: return None trait_row = 13 # Index of anxiety scores # Convert age def convert_age(value: str) -> Optional[int]: if not value: return None try: return int(value.split(': ')[1]) except: return None age_row = 0 # Index of age data # Convert gender (female: 0, male: 1) def convert_gender(value: str) -> Optional[int]: if not value: return None try: # Value is coded as "female: 0" or "female: 1" # female: 1 means female (should be 0) # female: 0 means male (should be 1) return 1 - int(value.split(': ')[1]) except: return None gender_row = 1 # Index of gender data # Save initial filtering info is_trait_available = trait_row is not None is_validation = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Extract clinical features if trait data is available if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the gene identifiers, they appear to be human gene symbols (e.g., A1BG, A1CF, A2M) # so no mapping is needed requires_gene_mapping = False # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data try: clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Determine if features are biased is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note="Gene expression data successfully mapped and linked with clinical features" ) # 6. Save linked data only if usable AND trait is not biased if is_usable and not is_trait_biased: linked_data.to_csv(out_data_file) except Exception as e: print(f"Error in data linking and processing: {str(e)}") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, df=pd.DataFrame(), note=f"Data processing failed: {str(e)}" )