# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE182600" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600" # Output paths out_data_file = "./output/preprocess/3/Arrhythmia/GSE182600.csv" out_gene_data_file = "./output/preprocess/3/Arrhythmia/gene_data/GSE182600.csv" out_clinical_data_file = "./output/preprocess/3/Arrhythmia/clinical_data/GSE182600.csv" json_path = "./output/preprocess/3/Arrhythmia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Yes, this dataset contains gene expression data from PBMCs # 2. Variable Availability and Data Type Conversion trait_row = 3 # 'outcome' row contains binary outcome data age_row = 1 # 'age' row contains continuous age values gender_row = 2 # 'gender' row contains binary gender data def convert_trait(value: str) -> int: """Convert outcome status to binary: Success=1, Failure=0""" if not value: return None value = value.split(': ')[-1].lower() if value == 'success': return 1 elif value in ['failure', 'fail']: return 0 return None def convert_age(value: str) -> float: """Convert age string to float""" if not value: return None try: return float(value.split(': ')[-1]) except: return None def convert_gender(value: str) -> int: """Convert gender to binary: F=0, M=1""" if not value: return None value = value.split(': ')[-1].upper() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(selected_clinical_df) print("Preview of processed clinical data:") print(preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # ILMN_ prefix indicates these are Illumina microarray probe IDs, not gene symbols requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # Get gene mapping between probe IDs (ID) and gene symbols (Symbol) mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview result to verify mapping worked correctly print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst few mapped gene symbols:") print(gene_data.index[:10]) print("\nFirst few rows of expression data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)