# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE123088" # Output paths out_data_file = "./output/preprocess/3/Asthma/GSE123088.csv" out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE123088.csv" json_path = "./output/preprocess/3/Asthma/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # CD4+ T cells data likely contains gene expression, not just miRNA or methylation is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 1 # 'primary diagnosis' contains trait info age_row = 3 # 'age' data starts at feature 3 and continues in feature 4 gender_row = 2 # 'Sex' info is in feature 2 # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None value = value.split(': ')[1] # Convert values to binary (0: control, 1: asthma) if value in ['HEALTHY_CONTROL', 'Control']: return 0 elif value in ['ASTHMA']: return 1 return None def convert_age(value): if pd.isna(value): return None try: # Extract numeric age value after colon age = int(value.split(': ')[1]) return age except: return None def convert_gender(value): if pd.isna(value): return None if not value.startswith('Sex:'): return None value = value.split(': ')[1] # Convert to binary (0: female, 1: male) if value.upper() == 'FEMALE': return 0 elif value.upper() == 'MALE': return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(selected_clinical) print("Preview of processed clinical data:") print(preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The identifiers appear to be numeric IDs from 1-24166 # These are not gene symbols and will need mapping requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract platform info from SOFT file line by line import gzip import re platform_lines = [] gene_symbol_lines = [] with gzip.open(soft_file, 'rt') as f: in_platform_block = False for line in f: if line.startswith('!Platform_'): platform_lines.append(line.strip()) if 'table_begin' in line: in_platform_block = True # Skip header line next(f) continue elif 'table_end' in line: in_platform_block = False continue elif in_platform_block: gene_symbol_lines.append(line.strip()) # Parse platform annotation table import pandas as pd import io platform_table = pd.read_csv(io.StringIO('\n'.join(gene_symbol_lines)), sep='\t') # Preview annotation data print("Platform Information:") for line in platform_lines[:5]: print(line) print("\nPlatform Annotation Table Preview:") print("Column names:", platform_table.columns.tolist()) print("\nFirst few rows:") print(preview_df(platform_table)) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Look through entire SOFT file for gene symbol information import gzip platform_lines = [] gene_table_lines = [] with gzip.open(soft_file, 'rt') as f: in_gene_table = False table_found = False for line in f: # Keep track of platform lines for debugging if line.startswith('!Platform_'): platform_lines.append(line.strip()) if 'table_begin' in line: in_gene_table = True # Get header line header = next(f).strip() gene_table_lines.append(header) continue elif 'table_end' in line: in_gene_table = False elif in_gene_table and ('gene_symbol' in line.lower() or 'gene_name' in line.lower() or 'symbol' in line.lower() or 'gene_assignment' in line.lower()): table_found = True gene_table_lines.append(line.strip()) print("Platform information:") for line in platform_lines[:10]: print(line) print("\nFirst few gene table lines (if gene symbols found):") if gene_table_lines: for line in gene_table_lines[:5]: print(line) print("\nSearching for alternative annotation fields...") # Extract gene annotation trying both methods gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("\nGene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary (showing all columns):") pd.set_option('display.max_columns', None) print(gene_annotation.head().to_dict('records')) # Create mapping dataframe using platform's annotation mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna() # Create a list of genes for the Gene column, single gene ID per row mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else []) mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID']) # Apply gene mapping to transform probe-level data to gene-level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Normalize gene symbols to consistent format gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Get file paths and read data soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get gene annotation and expression data gene_annotation = get_gene_annotation(soft_file) gene_data = get_genetic_data(matrix_file) # Clean and create mapping dataframe gene_annotation = gene_annotation[gene_annotation['ENTREZ_GENE_ID'].str.isnumeric().fillna(False)] mapping_data = gene_annotation.loc[:, ['ID', 'ENTREZ_GENE_ID']].dropna() mapping_data['Gene'] = mapping_data['ENTREZ_GENE_ID'].map(lambda x: [str(int(float(x)))] if pd.notnull(x) and float(x) > 0 else []) mapping_data = mapping_data.drop(columns=['ENTREZ_GENE_ID']) # Apply gene mapping to transform probe-level data to gene-level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Dataset contains gene expression data from CD4+ T cells." ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)