# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE182797" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE182797" # Output paths out_data_file = "./output/preprocess/3/Asthma/GSE182797.csv" out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE182797.csv" out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE182797.csv" json_path = "./output/preprocess/3/Asthma/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and overall design, this dataset contains transcriptomic data from nasal biopsies is_gene_available = True # 2.1 Data Availability # trait data is in Feature 0 (diagnosis) trait_row = 0 # gender data is in Feature 1 but only contains females gender_row = None # Not useful since all subjects are female # age data is in Feature 2 age_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].lower() if 'adult-onset asthma' in value: return 1 elif 'healthy' in value: return 0 return None def convert_age(x): if not isinstance(x, str): return None try: value = x.split(': ')[-1] return float(value) except: return None def convert_gender(x): # This function won't be used but included for completeness if not isinstance(x, str): return None value = x.split(': ')[-1].lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we need to extract clinical features selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These are Agilent probe identifiers starting with A_19_P, NOT human gene symbols requires_gene_mapping = True # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview annotation dataframe structure print("Gene Annotation Preview:") print("Column names:", gene_annotation.columns.tolist()) print("\nFirst few rows as dictionary:") print(preview_df(gene_annotation)) # 1. Based on the dataframes, 'ID' column contains probe identifiers, and 'GENE_SYMBOL' contains gene symbols prob_col = 'ID' gene_col = 'GENE_SYMBOL' # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe-level measurements to gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Print dimensions and first few rows to verify the mapping print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)