# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE205151" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE205151" # Output paths out_data_file = "./output/preprocess/3/Asthma/GSE205151.csv" out_gene_data_file = "./output/preprocess/3/Asthma/gene_data/GSE205151.csv" out_clinical_data_file = "./output/preprocess/3/Asthma/clinical_data/GSE205151.csv" json_path = "./output/preprocess/3/Asthma/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, this dataset contains gene expression data from Nanostring array is_gene_available = True # 2.1. Data Availability # Use cluster information as trait data since it represents asthma phenotypes trait_row = 1 # Feature 1 contains cluster info age_row = None # Age not explicitly provided gender_row = None # Gender not provided # 2.2. Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None # Extract cluster number after colon and convert to binary # cluster 1 -> 0, cluster 2 -> 1 try: cluster = int(x.split(':')[1].strip()) if cluster == 1: return 0 elif cluster == 2: return 1 return None except: return None def convert_age(x): # Not used since age data unavailable return None def convert_gender(x): # Not used since gender data unavailable return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the gene identifiers in the first few rows, they appear to be valid human gene symbols # For example, ABCB1, ABCF1, ABL1, ADA, AHR are all standard human gene symbols # The ID column contains recognized official human gene symbols that do not need mapping requires_gene_mapping = False # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Dataset contains RNA transcriptome data in human sinonasal epithelial cells." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)