# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE115574" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE115574" # Output paths out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE115574.csv" out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE115574.csv" out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE115574.csv" json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # The background info mentions "Affymetrix human gene expression microarrays" is_gene_available = True # 2.1 Variable Availability trait_row = 0 # Disease state field contains AF vs SR status age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion def convert_trait(value): if not isinstance(value, str): return None val = value.lower().split(': ')[-1].strip() if 'atrial fibrillation' in val: return 1 elif 'sinus rhythm' in val: return 0 return None def convert_age(value): return None # Not used but defined for completeness def convert_gender(value): return None # Not used but defined for completeness # 3. Save Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # These appear to be Affymetrix probe IDs (e.g. '1007_s_at') rather than human gene symbols # They will need to be mapped to standard gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. ID and Gene Symbol columns identified from the annotation preview # ID column matches the probe IDs in gene expression data (e.g. '1007_s_at') # Gene Symbol column contains the target gene symbols prob_col = 'ID' gene_col = 'Gene Symbol' # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the first few rows to verify the mapping print("\nFirst few rows of mapped gene expression data:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save gene data genetic_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Sample size adequate. Gene expression data quality good. Trait is postoperative atrial fibrillation vs sinus rhythm." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)