# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE143924" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE143924" # Output paths out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE143924.csv" out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE143924.csv" out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE143924.csv" json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background information, this is a transcriptome analysis study from tissue biopsies is_gene_available = True # 2.1 Data Availability # From sample characteristics, trait data is in row 1 (POAF vs SR) trait_row = 1 # Age and gender are not available in the sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].lower() if "postoperative atrial fibrillation" in value or "poaf" in value: return 1 elif "sinus rhythm" in value: return 0 return None def convert_age(value): return None # Not used since age data not available def convert_gender(value): return None # Not used since gender data not available # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # These appear to be human gene symbols - they follow standard HUGO nomenclature with accepted formats like: # - Standard gene symbols (e.g. AACS, AADAC) # - Antisense RNA annotations (-AS1 suffix) # - Pseudogene annotations (P suffix) # No mapping needed as they are already in the desired format requires_gene_mapping = False # 1. Normalize gene symbols and save gene data genetic_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Sample size adequate. Gene expression data quality good. Trait is postoperative atrial fibrillation vs sinus rhythm." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)