# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE235307" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE235307" # Output paths out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE235307.csv" out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE235307.csv" out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE235307.csv" json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From background info, this is a blood gene expression study is_gene_available = True # 2.1 Data Row Identification trait_row = 5 # cardiac rhythm after 1 year follow-up age_row = 2 # age is available gender_row = 1 # gender is available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert AF status to binary: 1 for AF, 0 for sinus rhythm""" if value is None: return None value = value.split(': ')[-1].lower().strip() if 'atrial fibrillation' in value: return 1 elif 'sinus rhythm' in value: return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to float""" if value is None: return None try: return float(value.split(': ')[-1]) except: return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary: 0 for female, 1 for male""" if value is None: return None value = value.split(': ')[-1].lower().strip() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # The gene identifiers in this dataset appear to be simple numeric values, # which are not standard human gene symbols. # Standard gene symbols would be like "BRCA1", "TP53", etc # Therefore mapping is required to convert these to proper gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. From the preview, 'ID' contains numeric identifiers matching gene expression data, # and 'GENE_SYMBOL' contains human gene symbols # 2. Extract mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # 3. Apply mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Normalize gene symbols in the gene expression data gene_data = normalize_gene_symbols_in_index(gene_data) # Preview the mapped gene data print("\nFirst 20 genes after mapping:") print(list(gene_data.index[:20])) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)