# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE41177" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE41177" # Output paths out_data_file = "./output/preprocess/3/Atrial_Fibrillation/GSE41177.csv" out_gene_data_file = "./output/preprocess/3/Atrial_Fibrillation/gene_data/GSE41177.csv" out_clinical_data_file = "./output/preprocess/3/Atrial_Fibrillation/clinical_data/GSE41177.csv" json_path = "./output/preprocess/3/Atrial_Fibrillation/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Dataset contains microarray gene expression data per background info # 2.1 Data Availability trait_row = 3 # 'af duration' indicates AF status duration age_row = 2 # Age data available gender_row = 1 # Gender data available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() # Convert AF duration to binary - any duration indicates AF presence if value == '0M': return 0 elif 'M' in value: # Has months duration return 1 return None def convert_age(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value.endswith('Y'): try: return float(value[:-1]) # Remove 'Y' and convert to float except: return None return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract Clinical Features selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the processed clinical data print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # These are Affymetrix probe IDs (starting with numbers and containing "_at"), not human gene symbols # They need to be mapped to standard gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Get gene mapping dataframe from annotation data # 'ID' column contains probe IDs matching genetic_data, 'Gene Symbol' contains gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert from probes to genes gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the first few rows and columns of the mapped gene data print("\nFirst few rows of mapped gene expression data:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)