# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" cohort = "GSE131027" # Input paths in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer" in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE131027" # Output paths out_data_file = "./output/preprocess/3/Bile_Duct_Cancer/GSE131027.csv" out_gene_data_file = "./output/preprocess/3/Bile_Duct_Cancer/gene_data/GSE131027.csv" out_clinical_data_file = "./output/preprocess/3/Bile_Duct_Cancer/clinical_data/GSE131027.csv" json_path = "./output/preprocess/3/Bile_Duct_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on the series title and summary, this appears to be a study focusing on genetic mutations and variants # It's likely there will be gene expression data to study these variations is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Bile Duct Cancer) data is available in index 1 under 'cancer' trait_row = 1 # Age and gender are not explicitly available in the characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x: str) -> int: """Convert cancer type to binary for Bile Duct Cancer""" if pd.isna(x): return None # Extract value after colon and strip whitespace value = x.split(':')[1].strip().lower() # Return 1 for bile duct cancer, 0 for other cancers return 1 if 'bile duct cancer' in value else 0 def convert_age(x: str) -> float: """Convert age to continuous value""" # Not used since age data is not available return None def convert_gender(x: str) -> int: """Convert gender to binary""" # Not used since gender data is not available return None # 3. Save Metadata # Conduct initial filtering - trait data is available (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True ) # 4. Clinical Feature Extraction # Since trait_row is not None, we proceed with clinical feature extraction clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_result = preview_df(clinical_features) print("Preview of clinical features:") print(preview_result) # Save clinical features to CSV os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and some data preview to verify structure print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) print("\nData preview:") preview_subset = genetic_data.iloc[:5, :5] print(preview_subset) # These appear to be Affymetrix probe IDs rather than gene symbols based on the format # (e.g. '1007_s_at', '1053_at') which is characteristic of older Affymetrix arrays. # They will need to be mapped to standard human gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # From the previews we can see that: # - Gene expression data uses probe IDs like '1007_s_at' # - Gene annotation data has 'ID' column with the same format probe IDs # - Gene annotation data has 'Gene Symbol' column with human gene symbols # Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply the mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the result print("\nFirst few genes and their expression values:") preview_result = preview_df(gene_data) print(preview_result) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)