# Path Configuration from tools.preprocess import * # Processing context trait = "Bladder_Cancer" cohort = "GSE145261" # Input paths in_trait_dir = "../DATA/GEO/Bladder_Cancer" in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE145261" # Output paths out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE145261.csv" out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE145261.csv" out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE145261.csv" json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on context, this dataset studies carcinoma with molecular analysis # 2. Variable Availability and Data Type Conversion # 2.1 Row identification trait_row = 3 # "tissue type" contains SCC vs UC info age_row = 0 # "subject age" contains age info gender_row = 1 # "subject gender" contains gender info # 2.2 Conversion functions def convert_trait(x): # Binary: SCC (1) vs UC (0) if not isinstance(x, str): return None x = x.lower() if 'scc' in x or 'small cell' in x: return 1 elif 'uc' in x or 'urothelial' in x: return 0 return None def convert_age(x): # Continuous: extract age in years if not isinstance(x, str): return None try: age = int(''.join(filter(str.isdigit, x))) if 0 <= age <= 120: # Basic age validation return age return None except: return None def convert_gender(x): # Binary: female (0) vs male (1) if not isinstance(x, str): return None x = x.lower() if 'female' in x: return 0 elif 'male' in x: return 1 return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_data = preview_df(selected_clinical_df) print("Preview of extracted clinical features:", preview_data) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These are Illumina probes (starting with ILMN_), not gene symbols # We'll need to map them to human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation from SOFT file using default prefixes gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation columns and first few values:") print(preview_df(gene_annotation)) # Also inspect the raw SOFT file annotation section to verify parsing import gzip with gzip.open(soft_file, 'rt') as f: found_table = False lines = [] for line in f: if '!platform_table_begin' in line.lower(): found_table = True lines.append(next(f)) # Get header line for _ in range(3): # Get first 3 data lines lines.append(next(f)) break if found_table: print("\nRaw annotation format in SOFT file:") for line in lines: print(line.strip()) # Extract gene mapping from annotation # 'ID' column contains probe IDs (ILMN_*) matching the gene expression data # 'Symbol' column contains gene symbols we want to map to gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, gene_mapping) # Print info about the conversion print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols and save normalized gene data gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="NanoString nCounter RNA profiling data for bladder cancer recurrence study" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)