# Path Configuration from tools.preprocess import * # Processing context trait = "Bladder_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Bladder_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json" # 1. Select the relevant subdirectory for bladder cancer subdirectory = 'TCGA_Bladder_Cancer_(BLCA)' cohort_dir = os.path.join(tcga_root_dir, subdirectory) # 2. Get the file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'age_began_smoking_in_years', 'days_to_birth'] candidate_gender_cols = ['gender'] # Print directory contents to check structure print("TCGA root directory contents:") print(os.listdir(tcga_root_dir)) # Dictionaries from previous steps showing age and gender column candidates age_col_samples = { 'age_at_initial_pathologic_diagnosis': [62, 68, 71, 69, 76], 'age': [62, 68, 71, 69, 76] } gender_col_samples = { 'gender': ['MALE', 'MALE', 'MALE', 'MALE', 'FEMALE'] } # Select appropriate columns based on data quality age_col = 'age_at_initial_pathologic_diagnosis' # More specific clinical column name gender_col = 'gender' # Only gender column available with valid values # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features # First create trait labels using sample IDs, then add demographics if available clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.concat([clinical_features, normalized_gene_df.T], axis=1) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)