# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE207847" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE207847" # Output paths out_data_file = "./output/preprocess/3/Breast_Cancer/GSE207847.csv" out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE207847.csv" out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE207847.csv" json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background info mentioning "gene expression profile using Clariom D platform", # this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability & 2.2 Conversion Functions # Trait (loco-regional recurrence time) trait_row = 3 def convert_trait(val): if not isinstance(val, str): return None val = val.split(': ')[-1].strip().upper() if val == 'EARLY': return 0 # < 2 years elif val == 'INTERMEDIATE': return 0.5 # 2-5 years elif val == 'LATE': return 1 # > 5 years return None # Age - Not available in characteristics age_row = None convert_age = None # Gender - Constant value "female" for all samples gender_row = None # Although present in row 1, it's constant convert_gender = None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) # The identifiers appear to be using TC (transcript cluster) format from Affymetrix Clariom arrays # These are not standard gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Get gene mapping from annotation data # 'ID' column contains probe IDs matching genetic_data # 'gene_assignment' contains gene symbols in format "ID // SYMBOL // ..." prob_col = 'ID' gene_col = 'gene_assignment' mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # Extract valid gene symbols def extract_gene_symbol(text): if not isinstance(text, str): return None parts = text.split('//') if len(parts) >= 2: symbol = parts[1].strip() # Validate that it looks like a proper gene symbol if len(symbol) > 0 and not symbol.startswith('---'): return symbol return None # Update mapping before applying mapping_data['Gene'] = mapping_data['Gene'].apply(extract_gene_symbol) mapping_data = mapping_data.dropna() # Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview first few gene symbols print("\nFirst few genes in mapped expression data:") print(list(gene_data.index[:5])) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=trait_biased, df=linked_data, note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)