# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE234017" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE234017" # Output paths out_data_file = "./output/preprocess/3/Breast_Cancer/GSE234017.csv" out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE234017.csv" out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE234017.csv" json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, this is a spatial transcriptomics dataset studying gene expression is_gene_available = True # 2.1 Data Availability # From Feature 2, we can infer BRCA mutation status (trait) trait_row = 2 # Age and gender are not available in the sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): # Extract value after colon and strip whitespace if ':' in value: value = value.split(':')[1].strip() # Convert BRCA mutation status to binary (WT=0, BRCA1/2=1) if 'WT' in value: return 0 elif 'BRCA1' in value or 'BRCA2' in value: return 1 return None def convert_age(value): # Not needed since age data unavailable return None def convert_gender(value): # Not needed since gender data unavailable return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: # Extract clinical features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at the gene identifiers (starting with "RTS"), these are not standard human gene symbols # They appear to be probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Try searching for ID patterns in all columns print("All column names:", gene_metadata.columns.tolist()) print("\nPreview first few rows of each column to locate numeric IDs:") for col in gene_metadata.columns: sample_values = gene_metadata[col].dropna().head().tolist() print(f"\n{col}:") print(sample_values) # Inspect raw file to see unfiltered annotation format import gzip print("\nRaw SOFT file preview:") with gzip.open(soft_file, 'rt', encoding='utf-8') as f: header = [] for i, line in enumerate(f): header.append(line.strip()) if i >= 10: # Preview first 10 lines break print('\n'.join(header)) # Get gene ID mapping from probe IDs to gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ORF') # Apply mapping to convert probe-level data to gene-level expression data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Print gene data dimensions and preview print("\nGene expression data shape after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Load clinical data and prepare genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) if gene_data.shape[0] > gene_data.shape[1]: # If genes are in rows gene_data = gene_data.T # 3. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data normalized to standard gene symbols." ) # 7. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)