# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Breast_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json" # Find the cohort directory for breast cancer cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Breast_Cancer_(BRCA)') # Get the file paths for clinical and genetic data clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the clinical data clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) # Load the genetic data genetic_df = pd.read_csv(genetic_file_path, sep='\t', index_col=0) # Print clinical data column names print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns candidate_age_cols = ["Age_at_Initial_Pathologic_Diagnosis_nature2012", "age_at_initial_pathologic_diagnosis"] candidate_gender_cols = ["Gender_nature2012", "gender"] # Get correct file paths using TCGA code clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, "BRCA")) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview age columns age_preview = clinical_df[candidate_age_cols].head(5).to_dict('list') print("Age columns preview:") print(age_preview) # Extract and preview gender columns gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict('list') print("\nGender columns preview:") print(gender_preview) # Directly set variables since the output of previous step is missing age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Define demographic columns age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" # Get file paths for clinical and genetic data cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Breast_Cancer_(BRCA)') clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load data clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) genetic_df = pd.read_csv(genetic_file_path, sep='\t', index_col=0) # 1. Extract standardized clinical features clinical_data = tcga_select_clinical_features(clinical_df, trait="Breast_Cancer", age_col=age_col, gender_col=gender_col) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.merge(clinical_data, normalized_gene_df.T, left_index=True, right_index=True) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait_col="Breast_Cancer") # 5. Check for bias in features and remove biased demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Breast_Cancer") # 6. Validate and save cohort info note = "Data contains TCGA breast cancer samples with normalized gene expression." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)