# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE185658" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE185658" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE185658.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE185658.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE185658.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, this contains microarray gene expression data (mentioned in background) is_gene_available = True # 2.1 Data Availability # Trait (asthma) is available in group field (row 1) # Using asthma status as relevant trait for COVID-19 research trait_row = 1 # Age and gender are not available age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert asthma status to binary (0: healthy, 1: asthma)""" if not value: return None # Extract value after colon value = value.split(': ')[-1].strip().lower() if 'asthma' in value: return 1 elif 'healthy' in value: return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to float""" return None # Not used since age data not available def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0: female, 1: male)""" return None # Not used since gender data not available # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index)[:20]) # The gene identifiers appear to be probe IDs from an array platform (7892XXX format) # These numeric identifiers are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values print("Gene annotation columns preview:") print(preview_df(gene_metadata)) # Extract probe IDs and gene assignments from gene annotation data # The 'ID' column contains probe IDs matching gene expression data # The 'gene_assignment' column contains gene symbols mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save gene data to CSV gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Determine if features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving note = "" if os.path.getsize(out_gene_data_file) == 0: note = "Gene mapping failed - empty gene expression data" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)