# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE211378" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE211378" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE211378.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE211378.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE211378.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on series summary mentioning "Whole Blood profiling", gene expression data should be available is_gene_available = True # 2.1 Data Availability # Based on series design describing COVID convalescent vs Healthy donors trait_row = 12 # nanostring_id contains trait info age_row = None # No age data available gender_row = None # No gender data available # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert COVID-19 status to binary (0: healthy, 1: COVID convalescent)""" if not value or ':' not in value: return None id_str = value.split(':')[1].strip() # From series design, ID format suggests trait info if '_' in id_str: return 1 # COVID convalescent else: return 0 # Healthy def convert_age(value): """Not needed as age data is not available""" return None def convert_gender(value): """Not needed as gender data is not available""" return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 gene/probe IDs:") print(list(genetic_data.index)[:20]) # These look like official human gene symbols (HGNC approved symbols) # Examples: # ACE - Angiotensin Converting Enzyme # ACKR2/3/4 - Atypical Chemokine Receptors # ACSL1/3/4 - Acyl-CoA Synthetase Long Chain Family Members # AKT1/2/3 - AKT Serine/Threonine Kinases requires_gene_mapping = False # 1. Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data_loaded = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data_loaded, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias in features trait_biased, filtered_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info note = "This dataset contains COVID-19 binary trait data (convalescent vs healthy) and gene expression data from whole blood samples. Age and gender data are not available." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=filtered_data, note=note ) # 6. Save linked data if usable if is_usable: filtered_data.to_csv(out_data_file)