# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE212865" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE212865" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE212865.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE212865.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE212865.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Title mentions "microarrays" and summary discusses gene expression # 2.1 Data Availability trait_row = 0 # Disease state indicating COVID vs control age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion def convert_trait(value): """Convert COVID status to binary (0=Control, 1=COVID/COVID_SDRA)""" if not isinstance(value, str): return None val = value.split(': ')[-1].strip() if val == 'Control': return 0 elif val in ['Covid19', 'Covid19_SDRA']: return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Preview the results print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(list(genetic_data.index)[:20]) # These row identifiers appear to be numeric IDs (not gene symbols). # This kind of identifier pattern suggests probe IDs or similar platform-specific identifiers. # Based on biomedical knowledge, human gene symbols would be text-based like "GAPDH", "IL6", etc. # Therefore, these identifiers need to be mapped to standard gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # This is human gene data with proper annotations is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # For each annotation row, extract gene symbols from descriptive text gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_human_gene_symbols) # Get mapping data with probe IDs and gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene_Symbol') # Convert probe-level measurements to gene-level expression values gene_data = apply_gene_mapping(genetic_data, mapping_data) # Save processed gene data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # Add debug prints print("Clinical features shape:", clinical_features.shape) print("Normalized gene data shape:", normalized_gene_data.shape) print("Linked data shape:", linked_data.shape) print("\nSample IDs in clinical data:", clinical_features.index.tolist()[:5]) print("Sample IDs in gene data:", normalized_gene_data.columns.tolist()[:5]) # Validate linking was successful if len(linked_data) == 0 or linked_data[trait].isna().all(): print(f"\nData linking failed - no valid samples found") is_gene_available = False linked_data = None else: # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # 1. Normalize gene symbols and save gene data print("Gene data shape before normalization:", gene_data.shape) if len(gene_data) == 0: # Create minimal DataFrame with clinical data for metadata clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=True, is_biased=True, # Mark as biased since no gene data df=clinical_features, # Pass clinical features as minimal DataFrame note="Gene mapping failed - no valid gene symbols found." ) else: # Continue with gene normalization and linking if gene data exists normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)