# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE212866" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE212866" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE212866.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE212866.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE212866.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Since this is a microarray study based on peripheral blood samples, it's likely to contain gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 0 # Disease state contains COVID-19 status age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert disease state to binary (0 for control, 1 for COVID-19)""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'control' in value: return 0 elif 'covid19' in value: # Both Covid19 and Covid19_SDRA are positive cases return 1 return None def convert_age(value: str) -> float: return None def convert_gender(value: str) -> int: return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Based on the row identifiers which appear to be numeric codes (23064070, etc.) instead of standard gene symbols # we need to map these IDs to human gene symbols for biological interpretation requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # This is human gene data with proper annotations is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Print more details of gene annotation data to find matching probe IDs print("\nFirst few rows of gene metadata:") print(gene_metadata.iloc[:5]) # Use ID column for probe mapping and extract gene symbols from SPOT_ID.1 mapping_df = get_gene_mapping(gene_metadata, 'ID', 'SPOT_ID.1') # Convert probe-level measurements to gene expression values gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols using standard names gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data comparing COVID-19 cases with healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)