# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE213313" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE213313" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE213313.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE213313.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE213313.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Yes, this is microarray analysis of whole blood RNA samples according to background info is_gene_available = True # 2.1 Row Identifiers trait_row = 2 # severity info in row 2 age_row = None # age not available in characteristics gender_row = None # gender not available in characteristics # 2.2 Conversion Functions def convert_trait(value: str) -> Optional[float]: if not value or ':' not in value: return None severity = value.split(':')[1].strip().lower() if severity == 'critical': return 1.0 # More severe elif severity == 'non-critical': return 0.0 # Less severe return None # Healthy controls excluded def convert_age(value: str) -> Optional[float]: return None # Not used since age data unavailable def convert_gender(value: str) -> Optional[float]: return None # Not used since gender data unavailable # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, # clinical_data from previous step trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed data preview_df(selected_clinical_df) # Save to CSV os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Based on the gene identifiers like 'A_19_P00315452', these appear to be Agilent array probes # rather than standard human gene symbols. They need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # This is human gene data with proper annotations is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Inspect the gene annotation data and identify relevant columns # 'ID' contains probe IDs matching gene expression data # 'GENE_SYMBOL' contains the target gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("\nGene expression data preview:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # Print diagnostic information print("\nDiagnostic Information:") print("Clinical features shape:", clinical_features.shape) print("Normalized gene data shape:", normalized_gene_data.shape) print("\nSample of clinical feature IDs:", clinical_features.columns[:5].tolist()) print("Sample of genetic data IDs:", normalized_gene_data.columns[:5].tolist()) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Print linked data info print("\nLinked data shape before bias check:", linked_data.shape) print("Columns in linked data:", linked_data.columns[:5].tolist()) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients." ) # 6. Save linked data if usable if is_usable: print("\nSaving linked data with shape:", linked_data.shape) os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) print("Please provide the output from the previous step containing sample characteristics and background information to proceed with data availability assessment and feature extraction.") raise ValueError("Missing required input from previous step - cannot determine data availability without sample characteristics dictionary") # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From background info: "microarray analysis of serial whole blood RNA samples" # This indicates gene expression data is available is_gene_available = True # 2.1 Data Availability # From sample characteristics: trait_row = 2 # 'severity' indicates COVID-19 severity status age_row = None # Age data not available gender_row = None # Gender data not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert severity level to binary (0: Non-critical, 1: Critical)""" if value is None: return None value = value.split(": ")[-1].strip() if value == "Critical": return 1 elif value == "Non-critical": return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to float - placeholder since age not available""" return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary - placeholder since gender not available""" return None # 3. Save Metadata # Trait data is available since trait_row is not None is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Extract clinical features since trait_row is not None clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the processed clinical data print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Given that the gene identifiers start with "A_19_P", these are Agilent probe IDs and not standard gene symbols # They will need to be mapped to official human gene symbols for biological interpretation requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # This is human gene data with proper annotations is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Inspect the gene annotation data and identify relevant columns # 'ID' contains probe IDs matching gene expression data # 'GENE_SYMBOL' contains the target gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("\nGene expression data preview:") print(gene_data.head()) print("\nShape:", gene_data.shape) # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # Load saved clinical features clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains whole blood transcriptomic data comparing critical vs non-critical COVID-19 patients, with gene expression profiles from 19 critical and 15 non-critical patients." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)