# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE216705" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE216705" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE216705.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE216705.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE216705.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info from the soft file since matrix file shows this is a SuperSeries prefixes_background = ['!Series_title', '!Series_summary', '!Series_overall_design'] prefixes_clinical = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = filter_content_by_prefix(soft_file_path, prefixes_background, prefixes_clinical, source_type='file', return_df_a=False, return_df_b=True) # Extract unique characteristics values while removing prefixes char_values = {} for col in clinical_data.columns: if '!Sample_characteristics_ch1' in str(col): values = clinical_data[col].dropna() values = values.str.replace('!Sample_characteristics_ch1 = ', '').unique() # Group by characteristic type (e.g., tissue, cell type, etc.) for val in values: if ':' in val: key, value = val.split(': ', 1) if key not in char_values: char_values[key] = set() char_values[key].add(value) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for characteristic, values in char_values.items(): print(f"\n{characteristic}:") print(list(values)) # 1. Gene Expression Data Availability # Based on the title mentioning macrophages and GM-CSF, this likely contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # Sample characteristics dictionary appears empty, so no clinical data available trait_row = None age_row = None gender_row = None def convert_trait(x): pass def convert_age(x): pass def convert_gender(x): pass # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False) # 4. Clinical Feature Extraction # Skip since trait_row is None, indicating no clinical data available # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # Row indices appear to be probe IDs (e.g. 10338001) rather than human gene symbols # These are Illumina probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # Update gene availability status since we discovered this is mouse data is_gene_available = False # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) )