# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE227080" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE227080" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE227080.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE227080.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE227080.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability is_gene_available = True # Yes, contains immunological gene expression data from NanoString nCounter # 2.1 Data Availability trait_row = 2 # Severity information age_row = 1 # Age information gender_row = 0 # Gender information # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert COVID-19 severity to binary: 1 for positive cases (MILD or MOD_SEV), 0 for negative""" if not value or ':' not in value: return None severity = value.split(':')[1].strip().upper() if severity == 'NEG': return 0 elif severity in ['MILD', 'MOD_SEV']: return 1 return None def convert_age(value: str) -> float: """Convert age string to float""" if not value or ':' not in value: return None try: return float(value.split(':')[1].strip()) except: return None def convert_gender(value: str) -> int: """Convert gender to binary: 0 for female, 1 for male""" if not value or ':' not in value: return None gender = value.split(':')[1].strip().upper() if gender == 'F': return 0 elif gender == 'M': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender) # Preview the processed clinical data preview_df(clinical_df) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) # The identifiers in the index appear to be standard human gene symbols (e.g. ABCB1, ABL1, ADA) # so no mapping is needed requires_gene_mapping = False # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data.T) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains immunological gene expression data from 60 COVID-19 positive cases (mild and moderate/severe) and 59 COVID-negative controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)