# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE243348" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE243348" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE243348.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE243348.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE243348.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # From background info, this is gene expression data of 773 immune genes is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Identify rows containing data trait_row = 0 # Disease status in row 0 gender_row = 2 # Sex in row 2 age_row = 3 # Age in row 3 # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert COVID-19 status to binary: 1 for COVID-19+, 0 for healthy""" if pd.isna(value): return None value = value.split(": ")[1].strip().lower() if "covid-19+" in value: return 1 elif "healthy" in value: return 0 return None def convert_gender(value: str) -> int: """Convert gender to binary: 1 for male, 0 for female""" if pd.isna(value): return None value = value.split(": ")[1].strip().lower() if "female" in value: return 0 elif "male" in value: return 1 return None def convert_age(value: str) -> float: """Convert age to continuous value""" if pd.isna(value): return None try: return float(value.split(": ")[1]) except: return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) requires_gene_mapping = False # The row index labels already appear to be valid HUGO gene symbols (e.g. ACE, ACKR2, ACKR3) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0).T # Transpose clinical features first linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains longitudinal gene expression data from 30 COVID-19+ and 11 healthy control participants." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = linked_data.T # Transpose after linking to get samples as rows linked_data = handle_missing_values(linked_data, trait) # Use trait from setup # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from COVID-19+ and healthy control participants." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # Get actual trait column name trait_col = linked_data.index[0] # 3. Handle missing values linked_data = linked_data.T # Transpose to get samples as rows linked_data.columns.name = None # Remove column name to avoid conflicts linked_data = handle_missing_values(linked_data, trait_col) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait_col) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains longitudinal gene expression data from COVID-19+ and healthy control participants." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)