# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE273225" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE273225" # Output paths out_data_file = "./output/preprocess/3/COVID-19/GSE273225.csv" out_gene_data_file = "./output/preprocess/3/COVID-19/gene_data/GSE273225.csv" out_clinical_data_file = "./output/preprocess/3/COVID-19/clinical_data/GSE273225.csv" json_path = "./output/preprocess/3/COVID-19/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on the Series_overall_design description mentioning nCounter digital gene expression analysis # with Immunology V2 panel targeting 579 immune system genes is_gene_available = True # 2.1 Data Availability # For COVID-19 trait - data not available in this transplantation study trait_row = None # Age data available in row 3 age_row = 3 # Gender data available in row 4 gender_row = 4 # 2.2 Data Type Conversion Functions def convert_trait(value): # Not used since trait data not available return None def convert_age(value): # Convert age string to numeric value try: # Extract number after "donor age (y): " age = int(value.split(": ")[1]) return age except: return None def convert_gender(value): # Convert gender to binary (0=female, 1=male) try: gender = value.split(": ")[1].lower() if gender == "female": return 0 elif gender == "male": return 1 else: return None except: return None # 3. Save initial metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False # since trait_row is None ) # Extract genetic data matrix genetic_data = get_genetic_data(matrix_file_path) # Print first few rows with column names to examine data structure print("Data preview:") print("\nColumn names:") print(list(genetic_data.columns)[:5]) print("\nFirst 5 rows:") print(genetic_data.head()) print("\nShape:", genetic_data.shape) # Verify this is gene expression data and check identifiers is_gene_available = True # Save updated metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Save gene expression data genetic_data.to_csv(out_gene_data_file) requires_gene_mapping = False # 1. Normalize gene symbols and save gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # Since trait_row is None (no COVID-19 data), skip data linking and update metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False, is_biased=None, df=None, note="Dataset contains gene expression data from lung transplantation study examining rewarming ischemia effects. No COVID-19 trait data available." )