# Path Configuration from tools.preprocess import * # Processing context trait = "Cardiovascular_Disease" cohort = "GSE235307" # Input paths in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE235307" # Output paths out_data_file = "./output/preprocess/3/Cardiovascular_Disease/GSE235307.csv" out_gene_data_file = "./output/preprocess/3/Cardiovascular_Disease/gene_data/GSE235307.csv" out_clinical_data_file = "./output/preprocess/3/Cardiovascular_Disease/clinical_data/GSE235307.csv" json_path = "./output/preprocess/3/Cardiovascular_Disease/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Series title and summary indicate gene expression data # 2. Variable Availability and Data Type Conversion # 2.1 Row indices trait_row = 5 # cardiac rhythm after 1 year follow-up indicates AF status age_row = 2 # age data available gender_row = 1 # gender data available # 2.2 Conversion functions def convert_trait(x: str) -> int: """Convert AF status to binary: 1 for AF, 0 for sinus rhythm""" value = x.split(": ")[-1].strip() if "Atrial fibrillation" in value: return 1 elif "Sinus rhythm" in value: return 0 return None def convert_age(x: str) -> float: """Convert age to continuous value""" try: return float(x.split(": ")[-1].strip()) except: return None def convert_gender(x: str) -> int: """Convert gender to binary: 0 for female, 1 for male""" value = x.split(": ")[-1].strip().lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save metadata for initial filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Preview the DataFrame structure print("DataFrame shape:", genetic_df.shape) print("\nFirst few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Print first few lines from the matrix file to inspect format print("\nRaw file preview:") with gzip.open(matrix_file, 'rt') as f: for i, line in enumerate(f): if i > 30 and i < 35: # Print a few lines around where data starts print(line.strip()) # IDs in the gene expression data appear to be numeric indices # They are non-standard format and need to be mapped to proper human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview column names and first few values print("Column names and preview of gene annotation data:") print(preview_df(gene_metadata)) # Get the gene mapping dataframe from annotation mapping_df = gene_metadata.loc[:, ['SPOT_ID', 'GENE_SYMBOL']] mapping_df = mapping_df.rename(columns={'SPOT_ID': 'ID', 'GENE_SYMBOL': 'Gene'}) mapping_df = mapping_df.astype({'ID': 'str'}) mapping_df = mapping_df.dropna() # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the gene expression data print("Gene expression data shape:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # Get the gene mapping dataframe from annotation # Filter out control probes and extract mapping columns mapping_df = gene_metadata[gene_metadata['CONTROL_TYPE'] == 'FALSE'].loc[:, ['NAME', 'GENE_SYMBOL']] mapping_df = mapping_df.rename(columns={'NAME': 'ID', 'GENE_SYMBOL': 'Gene'}) mapping_df = mapping_df.astype({'ID': 'str'}) mapping_df = mapping_df.dropna() print("Mapping dataframe shape:", mapping_df.shape) # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the gene expression data print("\nGene expression data shape:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # Redo gene mapping with correct ID column mapping_df = gene_metadata[gene_metadata['CONTROL_TYPE'] == 'FALSE'].loc[:, ['ID', 'GENE_SYMBOL']] mapping_df = mapping_df.rename(columns={'ID': 'ID', 'GENE_SYMBOL': 'Gene'}) mapping_df = mapping_df.astype({'ID': 'str'}) mapping_df = mapping_df.dropna() # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check and handle biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save cohort info note = "Gene expression data from blood samples in heart failure patients, measuring Atrial fibrillation status after 1 year follow-up. Contains trait (AF vs Sinus rhythm), age and gender data." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)