# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_Fatigue_Syndrome" cohort = "GSE67311" # Input paths in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome" in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE67311" # Output paths out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE67311.csv" out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE67311.csv" out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE67311.csv" json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Dataset uses Affymetrix Human Gene arrays, indicating gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type # 2.1 Row identification trait_row = 8 # Chronic fatigue syndrome status in row 8 age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert CFS status to binary (0: No CFS, 1: Has CFS)""" if pd.isna(value): return None value = value.lower().split(': ')[-1] if value == 'yes': return 1 elif value == 'no': return 0 return None def convert_age(value: str) -> float: """Convert age to float - not used as age unavailable""" return None def convert_gender(value: str) -> int: """Convert gender to binary - not used as gender unavailable""" return None # 3. Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical features clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Gene probe identifier pattern suggests they are not gene symbols # The identifiers are numeric values in the format 7XXXXXX, which appear to be Illumina probe IDs # We will need to perform identifier mapping requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify columns for mapping # 'ID' column in gene_metadata contains probe IDs matching genetic_df index # 'gene_assignment' column contains gene symbols in the format "NM_XXX // GENESYMBOL // description" # 2. Get mapping dataframe by extracting probe IDs and gene symbols # Use text extraction to get gene symbols from gene_assignment strings mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') # 3. Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print info about the mapping result print(f"Original probe data shape: {genetic_df.shape}") print(f"Gene expression data shape: {gene_data.shape}") print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from blood samples used to study chronic fatigue syndrome" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)