# Path Configuration from tools.preprocess import * # Processing context trait = "Craniosynostosis" cohort = "GSE27976" # Input paths in_trait_dir = "../DATA/GEO/Craniosynostosis" in_cohort_dir = "../DATA/GEO/Craniosynostosis/GSE27976" # Output paths out_data_file = "./output/preprocess/3/Craniosynostosis/GSE27976.csv" out_gene_data_file = "./output/preprocess/3/Craniosynostosis/gene_data/GSE27976.csv" out_clinical_data_file = "./output/preprocess/3/Craniosynostosis/clinical_data/GSE27976.csv" json_path = "./output/preprocess/3/Craniosynostosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability # Yes - dataset contains gene expression data from osteoblasts is_gene_available = True # 2.1. Identify data rows trait_row = 2 # 'type' field contains case/control status age_row = 0 # 'age months' field contains age data gender_row = 1 # 'gender' field contains gender data # 2.2. Data type conversion functions def convert_trait(value: str) -> int: """Convert trait value to binary (0=control, 1=case)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if 'Control' in value: return 0 elif 'Synostosis' in value: return 1 return None def convert_age(value: str) -> float: """Convert age value to continuous (months)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() try: return float(value) except: return None def convert_gender(value: str) -> int: """Convert gender to binary (0=F, 1=M)""" if not value or ':' not in value: return None value = value.split(':')[1].strip() if value == 'F': return 0 elif value == 'M': return 1 return None # 3. Save initial metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview results preview_result = preview_df(clinical_df) print("Preview of clinical data:") print(preview_result) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The gene IDs appear to be Illumina probe IDs (e.g., 7892501) # rather than standard human gene symbols. These will need to be mapped. requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify columns for mapping # 'ID' in gene annotation matches probe IDs in gene expression data # 'gene_assignment' contains gene symbols in a complex format # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape of the gene expression data print("Gene expression data shape:", gene_data.shape) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression from cardiogenic shock patients under ECMO, tracking outcome (Success vs Failure)" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)