# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE100521" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE100521" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE100521.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE100521.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE100521.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data is_gene_available = True # Illumina HumanHT-12 v4 BeadChip indicates gene expression data # 2.1 Variable Row Keys trait_row = 0 # Patient ID contains CF status age_row = 1 gender_row = 2 # 2.2 Conversion Functions def convert_trait(x: str) -> int: """Convert CF status to binary: 0 for non-CF, 1 for CF""" if not isinstance(x, str): return None value = x.split(": ")[1] if ": " in x else x if "CF patient" in value: return 1 elif "Non CF subject" in value: return 0 return None def convert_age(x: str) -> float: """Convert age to continuous value""" if not isinstance(x, str): return None value = x.split(": ")[1] if ": " in x else x try: return float(value) except: return None def convert_gender(x: str) -> int: """Convert gender to binary: 0 for Female, 1 for Male""" if not isinstance(x, str): return None value = x.split(": ")[1] if ": " in x else x if value.lower() == "female": return 0 elif value.lower() == "male": return 1 return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:", preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The ID format starting with 'ILMN_' indicates these are Illumina BeadArray # probe identifiers, which need to be mapped to standard human gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview results print("Gene mapping shape:", mapping_df.shape) print("\nGene expression data shape:", gene_data.shape) print("\nFirst few rows and columns of gene data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)