# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE107846" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE107846" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE107846.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE107846.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE107846.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on the background info - studying arachidonic acid metabolism, likely contains gene expression data is_gene_available = True # 2.1 Data Availability # Trait (CF status) is in row 5 "state" trait_row = 5 # Age is in row 1 age_row = 1 # Gender is in row 2 gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): # Extract value after colon if ':' in str(x): value = str(x).split(':')[1].strip() # Convert to binary: CF = 1, Healthy = 0 if value == 'CF': return 1 elif value == 'Healthy': return 0 return None def convert_age(x): # Extract value after colon and convert to float if ':' in str(x): value = str(x).split(':')[1].strip() try: return float(value) except: return None return None def convert_gender(x): # Extract value after colon if ':' in str(x): value = str(x).split(':')[1].strip() # Convert to binary: M = 1, F = 0 if value == 'M': return 1 elif value == 'F': return 0 return None # 3. Save Metadata - Initial Filtering is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The identifiers start with "ILMN_" which indicates these are Illumina probe IDs # These are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify columns for mapping (ID column matches ILMN identifiers, SYMBOL contains gene symbols) prob_col = 'ID' gene_col = 'SYMBOL' # 2. Get gene mapping dataframe containing probe IDs and corresponding gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print info about the gene mapping results print("Original probe data shape:", genetic_df.shape) print("Gene mapping shape:", mapping_df.shape) print("Mapped gene data shape:", gene_data.shape) print("\nPreview of mapped gene data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data using the concat function linked_data = pd.concat([clinical_features, gene_data], axis=0).T # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing gene expression in CF patients with and without secondhand smoke exposure" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)