# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE142610" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE142610" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE142610.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE142610.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE142610.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The dataset summary mentions transcription profiling and gene sets, # suggesting it contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Variable Row Numbers # The dataset contains cell line samples with different treatments # All samples are CFBE (cystic fibrosis bronchial epithelial) cells # No age or gender data as these are cell lines trait_row = 0 # Cell line info contains CF status age_row = None # No age data for cell lines gender_row = None # No gender data for cell lines # 2.2 Conversion Functions def convert_trait(value: str) -> int: """Convert CF status to binary CFBE cells are CF (positive) samples """ if not isinstance(value, str): return None if 'CFBE' in value: return 1 # CF positive return None def convert_age(value: str) -> float: return None # Not used def convert_gender(value: str) -> int: return None # Not used # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical data print("Preview of extracted clinical features:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Most gene identifiers in the data appear to be valid human gene symbols (e.g. A1BG, A1CF, A2M) # While some identifiers like '7A5' may need mapping, overall these are standard HGNC gene symbols requires_gene_mapping = False # 1. Normalize gene symbols and save genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_df.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, genetic_df) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)