# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE53543" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE53543" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE53543.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE53543.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE53543.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Yes, dataset contains genome-wide gene expression data from Illumina array # 2. Variable Availability and Data Type Conversion # Trait (RV infection status) trait_row = 2 # 'sample group' row contains infection status def convert_trait(value): if not value or ':' not in value: return None value = value.split(':')[1].strip() if value == 'RV_infected': return 1 elif value == 'Uninfected': return 0 return None # Gender gender_row = 1 # 'gender' row contains gender info def convert_gender(value): if not value or ':' not in value: return None value = value.split(':')[1].strip() if value == 'Female': return 0 elif value == 'Male': return 1 return None # Age age_row = None # Age information not available in sample characteristics def convert_age(value): return None # Not used but defined for completeness # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction selected_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_features)) # Save clinical features selected_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # ILMN_ prefixes indicate these are Illumina probe IDs # They need to be mapped to human gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. From inspection: 'ID' column in annotation matches probe IDs, 'Symbol' column has gene symbols probe_col = 'ID' gene_col = 'Symbol' # 2. Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, probe_col, gene_col) # 3. Convert probe measurements to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview to verify the mapping print("Gene expression data shape:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)