# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE60690" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE60690" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE60690.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE60690.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE60690.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Analysis of LCL gene expression data to identify disease-related pathways # 2. Variable Availability and Data Type Conversion # Trait data - consortium lung phenotype is continuous trait_row = 1 def convert_trait(x): if ':' not in str(x): return None value = str(x).split(':')[1].strip() try: return float(value) except: return None # Age data - age of enrollment in years is continuous age_row = 2 def convert_age(x): if ':' not in str(x): return None value = str(x).split(':')[1].strip() try: return float(value) except: return None # Gender data - binary (Female=0, Male=1) gender_row = 0 def convert_gender(x): if ':' not in str(x): return None value = str(x).split(':')[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Validate and save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features # Since trait_row is not None, we proceed with feature extraction clinical_features_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features_df)) # Save clinical features clinical_features_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Based on the numerical IDs (e.g. '2315554') shown in the row indices, # these are likely probe IDs from a microarray platform rather than human gene symbols. # They will need to be mapped to standard gene symbols for analysis. requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify relevant columns from annotation data: # ID column matches the probe IDs in gene expression data # gene_assignment column contains gene symbols but needs parsing # 2. Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') print("\nPreview of initial mapping data:") print(preview_df(mapping_df)) # Clean up the gene assignments to extract symbols def parse_gene_symbols(gene_assignment): if pd.isna(gene_assignment) or gene_assignment == '---': return None # Extract portions between // delimiters and take the second item which is the gene symbol parts = gene_assignment.split('//') if len(parts) < 2: return None return parts[1].strip() mapping_df['Gene'] = mapping_df['Gene'].apply(parse_gene_symbols) mapping_df = mapping_df.dropna() print("\nPreview of cleaned mapping data:") print(preview_df(mapping_df)) # 3. Apply the mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Print info about the result print("\nOriginal data shape (probes):", genetic_df.shape) print("Mapped data shape (genes):", gene_data.shape) print("\nPreview of gene expression data:") print(preview_df(gene_data)) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cell line study comparing deltaF508 CFTR mutant with wildtype CFTR in cystic fibrosis bronchial epithelial cells" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)