# Path Configuration from tools.preprocess import * # Processing context trait = "Depression" cohort = "GSE201332" # Input paths in_trait_dir = "../DATA/GEO/Depression" in_cohort_dir = "../DATA/GEO/Depression/GSE201332" # Output paths out_data_file = "./output/preprocess/3/Depression/GSE201332.csv" out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv" out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv" json_path = "./output/preprocess/3/Depression/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, this dataset contains transcriptional profiling data from whole blood samples is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Depression) data is in row 1 ("subject status") trait_row = 1 # Age data is in row 3 age_row = 3 # Gender data is in row 2 gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert MDD status to binary: 0 for control, 1 for MDD""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'mdd' in value or 'depression' in value: return 1 elif 'healthy' in value or 'control' in value: return 0 return None def convert_age(value): """Convert age to continuous numeric value""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() # Extract numeric value before 'y' try: age = int(value.replace('y','')) return age except: return None def convert_gender(value): """Convert gender to binary: 0 for female, 1 for male""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata # Trait data is available (trait_row is not None) is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview_dict = preview_df(clinical_features) print("\nPreview of clinical features:") print(preview_dict) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The gene identifiers are simple numeric indices, not human gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675) # Filter out control probes and probes without gene info gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)] gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()] # Preview filtered annotation data print("DataFrame shape after filtering:", gene_metadata.shape) print("\nColumn names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Extract gene annotation data from SOFT file def get_probe_gene_mapping(file_path): rows = [] with gzip.open(file_path, 'rt') as f: in_spot_section = False for line in f: line = line.strip() # Identify start of SPOT section which contains probe mappings if line.startswith('!Platform_table_begin'): in_spot_section = True # Skip the header line next(f) continue elif line.startswith('!Platform_table_end'): in_spot_section = False continue if in_spot_section and line: fields = line.split('\t') # Get probe ID and gene name rows.append([fields[0], fields[2]]) # ID and GENE_NAME columns # Convert to DataFrame gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene']) # Filter out empty gene names and control probes gene_metadata = gene_metadata[ (gene_metadata['Gene'].notna()) & (gene_metadata['Gene'] != '') & (~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True)) ] return gene_metadata # Extract and preview annotation data gene_metadata = get_probe_gene_mapping(soft_file) # Preview filtered annotation data print("DataFrame shape after filtering:", gene_metadata.shape) print("\nColumn names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Get gene annotation data from SOFT file using direct extraction def extract_platform_table(file_path): platform_data = [] with gzip.open(file_path, 'rt') as f: in_table = False for line in f: if line.startswith('!Platform_table_begin'): headers = next(f).strip().split('\t') in_table = True continue if line.startswith('!Platform_table_end'): break if in_table and line.strip(): platform_data.append(line.strip().split('\t')) return pd.DataFrame(platform_data, columns=headers) # Extract gene metadata gene_metadata = extract_platform_table(soft_file) # Print column names print("Column names in gene_metadata:") print(gene_metadata.columns) print("\nPreview of gene metadata:") print(preview_df(gene_metadata)) # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview results print("\nGene expression data shape:", gene_data.shape) print("\nFirst few gene symbols:") print(gene_data.index[:10]) print("\nPreview of gene expression values:") print(gene_data.head().iloc[:, :5]) # 1. Get gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file) # Print available columns to identify correct names print("Available columns:", gene_metadata.columns) # 2. Get gene mapping dataframe (using correct column names from gene_metadata) mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols') # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # 4. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 5. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 6. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 7. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 8. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="MDD vs healthy controls study" ) # 9. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata))