# Path Configuration from tools.preprocess import * # Processing context trait = "Duchenne_Muscular_Dystrophy" cohort = "GSE48828" # Input paths in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy" in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828" # Output paths out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv" out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv" out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv" json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is an Affymetrix exon array study measuring gene expression is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row identifiers for each variable trait_row = 0 # 'diagnosis' row contains trait info age_row = 2 # 'age (yrs)' row contains age info gender_row = 1 # 'gender' row contains gender info # 2.2 Conversion functions def convert_trait(value: str) -> Optional[int]: """Convert trait status to binary""" if not value or ':' not in value: return None diagnosis = value.split(': ')[1].strip().lower() if 'duchenne muscular dystrophy' in diagnosis: return 1 elif 'normal' in diagnosis: return 0 return None def convert_age(value: str) -> Optional[float]: """Convert age to float""" if not value or ':' not in value: return None age = value.split(': ')[1].strip().lower() try: if age in ['na', 'not available']: return None return float(age) except: return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary""" if not value or ':' not in value: return None gender = value.split(': ')[1].strip().lower() if gender == 'f': return 0 elif gender == 'm': return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract Clinical Features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The row IDs are numerical probe IDs from microarray platforms, not human gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify columns for gene identifiers and symbols # 'ID' column contains same identifiers as gene expression data # 'gene_assignment' contains gene symbols but needs parsing # Function to parse gene symbols from complex strings def parse_gene_symbols(text): if text == '---' or pd.isna(text): return None # Split by /// to handle multiple assignments gene_entries = text.split('///') symbols = [] for entry in gene_entries: parts = entry.strip().split('//') if len(parts) >= 3: # We need at least 3 parts to get to the gene symbol symbol = parts[1].strip() # Gene symbol is in the second position if symbol != '---': symbols.append(symbol) return symbols if symbols else None # Create initial mapping dataframe mapping_df = gene_metadata[['ID', 'gene_assignment']].copy() # Extract gene symbols and clean up mapping mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols) mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene']) # Explode lists of genes into separate rows mapping_df = mapping_df.explode('Gene') # Apply gene mapping to probe-level measurements gene_data = apply_gene_mapping(genetic_df, mapping_df) # Normalize gene symbols to standard form gene_data = normalize_gene_symbols_in_index(gene_data) # Print shape and preview mapped data print("Gene expression data shape after mapping:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Since gene_data is empty, we need to remap gene symbols def parse_gene_symbols(text): if text == '---' or pd.isna(text): return None # Split entries by /// for multiple assignments entries = text.split('///') symbols = [] for entry in entries: parts = [p.strip() for p in entry.split('//')] if len(parts) >= 2: # Need at least 2 parts symbol = parts[1] # Second part contains the gene symbol if symbol != '---': symbols.append(symbol) return symbols if symbols else None # Create initial mapping dataframe mapping_df = gene_metadata[['ID', 'gene_assignment']].copy() # Extract gene symbols and clean up mapping mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols) mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene']) # Explode lists of genes into separate rows mapping_df = mapping_df.explode('Gene') print(f"Number of probe-gene mappings: {len(mapping_df)}") # Apply gene mapping to probe-level measurements gene_data = apply_gene_mapping(genetic_df, mapping_df) print(f"Number of genes after mapping: {len(gene_data)}") # After remapping, proceed with the rest of step 7 # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) print(f"Number of genes after normalization: {len(gene_data)}") os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)