# Path Configuration from tools.preprocess import * # Processing context trait = "Eczema" cohort = "GSE123086" # Input paths in_trait_dir = "../DATA/GEO/Eczema" in_cohort_dir = "../DATA/GEO/Eczema/GSE123086" # Output paths out_data_file = "./output/preprocess/3/Eczema/GSE123086.csv" out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123086.csv" out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123086.csv" json_path = "./output/preprocess/3/Eczema/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is a microarray gene expression study is_gene_available = True # 2. Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None # Extract value after colon and convert to binary value = x.split(": ")[1].strip() if value == "ATOPIC_ECZEMA": return 1 elif value == "HEALTHY_CONTROL": return 0 return None def convert_age(x): if pd.isna(x): return None try: # Extract numeric age value after colon age = int(x.split(": ")[1]) return age except: return None def convert_gender(x): if pd.isna(x): return None # Extract value after colon and convert to binary value = x.split(": ")[1].strip() if value.upper() == "FEMALE": return 0 elif value.upper() == "MALE": return 1 return None # Find data rows in sample characteristics trait_row = 1 # Primary diagnosis in row 1 age_row = 3 # Age appears in rows 3 and 4, but row 3 has more entries gender_row = 2 # Sex information in row 2 # 3. Save metadata for initial filtering validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features clinical_df = pd.DataFrame(clinical_data) selected_clinical_df = geo_select_clinical_features( clinical_df, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Examine gene identifiers - these appear to be numbers rather than standard gene symbols # Numbers indicate probe or probe set IDs from a microarray platform # Will need to be mapped to gene symbols requires_gene_mapping = True # Extract probe IDs and gene name mapping from SOFT file gene_metadata = get_gene_annotation(soft_file) # Print field information to check available gene identifiers print("Sample of probe ID field:") print(gene_metadata['ID'].head()) print("\nAll column names:") print(list(gene_metadata.columns)) print("\nSample of gene metadata rows:") pd.set_option('display.max_columns', None) print(gene_metadata.head()) # Looking at the gene metadata, let's try to extract more information from the SOFT file # Extract probe IDs and gene name mapping from SOFT file again, but this time don't filter out comment lines gene_metadata = pd.read_csv(soft_file, compression='gzip', sep='\t', comment=None, on_bad_lines='skip') # Get relevant columns for mapping id_col = [col for col in gene_metadata.columns if 'ID_REF' in col or 'ID' in col][0] gene_col = [col for col in gene_metadata.columns if 'GENE_SYMBOL' in col][0] # Create mapping dataframe mapping_df = gene_metadata[[id_col, gene_col]].copy() mapping_df.columns = ['ID', 'Gene'] mapping_df = mapping_df.dropna() # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) print("Gene data shape after mapping:", gene_data.shape) print("\nPreview of first few genes and samples:") print(gene_data.head().iloc[:, :5]) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # Extract gene annotation data using the library function gene_metadata = get_gene_annotation(soft_file) # Get column with ENTREZ_GENE_IDs to map to NCBI gene symbols mapping_df = get_gene_mapping(gene_metadata, 'ID', 'ENTREZ_GENE_ID') # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) print("Gene data shape after mapping:", gene_data.shape) print("\nPreview of first few genes and samples:") print(gene_data.head().iloc[:, :5]) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # Skip gene symbol normalization since we have no valid gene data gene_data = pd.read_csv(out_gene_data_file, index_col=0) if len(gene_data) == 0: # Load clinical data for validation clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Check for biased features in clinical data trait_biased, clinical_df = judge_and_remove_biased_features(clinical_df, trait) validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Genes exist but mapping failed is_trait_available=True, is_biased=trait_biased, df=clinical_df, note="Gene mapping failed - no valid gene expression data produced" ) else: # Original processing steps gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing Eczema patient vs healthy control gene expression in CD4+ T cells" ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on the series description mentioning gene expression microarray analysis, RNA extraction, # and Agilent microarray processing, this dataset contains gene expression data is_gene_available = True # 2.1 Data Availability # Trait (primary diagnosis) is in row 1 trait_row = 1 # Gender is in row 3 (and partly in row 2) gender_row = 3 # Age appears in rows 3 and 4 age_row = 3 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait values to binary (0: control, 1: case)""" if not isinstance(value, str): return None value = value.split(': ')[-1].strip().upper() if "ATOPIC_ECZEMA" in value: return 1 elif "HEALTHY_CONTROL" in value: return 0 return None def convert_age(value: str) -> float: """Convert age values to continuous numbers""" if not isinstance(value, str) or not value.startswith('age: '): return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value: str) -> int: """Convert gender values to binary (0: female, 1: male)""" if not isinstance(value, str) or not value.startswith('Sex: '): return None value = value.split(': ')[1].strip().upper() if value == 'FEMALE': return 0 elif value == 'MALE': return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract Clinical Features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file) # Based on the preview data, we can see this dataset has trait data (0s and 1s), age data (numeric age values), and gender data (0s and 1s) is_gene_available = True # This is a GEO dataset so likely contains gene expression data # Define conversion functions def convert_trait(value): if pd.isna(value): return None try: val = float(value.split(":")[-1].strip() if ":" in value else value) return val # Already binary (0/1) format except: return None def convert_age(value): if pd.isna(value): return None try: val = float(value.split(":")[-1].strip() if ":" in value else value) return val except: return None def convert_gender(value): if pd.isna(value): return None try: val = float(value.split(":")[-1].strip() if ":" in value else value) return val # Already in binary format where 1=male, 0=female except: return None # Identify row indices for each variable based on the data preview trait_row = 0 age_row = 1 gender_row = 2 # Initial filtering and save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # Extract clinical features since trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("\nPreview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file)